Multitask Learning for Sequence Labeling Tasks

نویسندگان

  • Arvind Agarwal
  • Saurabh Kataria
چکیده

In this paper, we present a learning method for sequence labeling tasks in which each example sequence has multiple label sequences. Our method learns multiple models, one model for each label sequence. Each model computes the joint probability of all label sequences given the example sequence. Although each model considers all label sequences, its primary focus is only one label sequence, and therefore, each model becomes a task-specific model, for the task belonging to that primary label. Such multiple models are learned simultaneously by facilitating the learning transfer among models through explicit parameter sharing. We experiment the proposed method on two applications and show that our method significantly outperforms the state-of-the-art method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When is multitask learning effective? Semantic sequence prediction under varying data conditions

Multitask learning has been applied successfully to a range of tasks, mostly morphosyntactic. However, little is known on when MTL works and whether there are data characteristics that help to determine its success. In this paper we evaluate a range of semantic sequence labeling tasks in a MTL setup. We examine different auxiliary tasks, amongst which a novel setup, and correlate their impact t...

متن کامل

Multitask learning for semantic sequence prediction under varying data conditions

Multitask learning has been applied successfully to a range of tasks, mostly morphosyntactic. However, little is known on when MTL works and whether there are data characteristics that help to determine the success of MTL. In this paper we evaluate a range of semantic sequence labeling tasks in a MTL setup. We examine different auxiliary task configurations, amongst which a novel setup, and cor...

متن کامل

Semi-supervised Multitask Learning for Sequence Labeling

We propose a sequence labeling framework with a secondary training objective, learning to predict surrounding words for every word in the dataset. This language modeling objective incentivises the system to learn general-purpose patterns of semantic and syntactic composition, which are also useful for improving accuracy on different sequence labeling tasks. The architecture was evaluated on a r...

متن کامل

Scalable Hierarchical Multitask Learning in Sequence Biology

Multitask learning methods investigate the challenge of combining information from several related problem domains. For a large family of multitask problems, relationships between tasks can be described by a hierarchical structure. This is particularly the case for many problems in Computational Biology, where different tasks correspond to different organisms, whose relationship to each other i...

متن کامل

A Unified Multitask Architecture for Predicting Local Protein Properties

A variety of functionally important protein properties, such as secondary structure, transmembrane topology and solvent accessibility, can be encoded as a labeling of amino acids. Indeed, the prediction of such properties from the primary amino acid sequence is one of the core projects of computational biology. Accordingly, a panoply of approaches have been developed for predicting such propert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1404.6580  شماره 

صفحات  -

تاریخ انتشار 2014